

Orgifi wants to solve a common challenge faced by individuals seeking to connect with others
through clubs and small organizations. That is the lack of an efficient platform to discover, manage,
and coordinate these groups. Whether someone is new to a city, looking for new hobbies, or
managing a club. Traditional methods of finding and running these communities are often
fragmented and inefficient. Orgifi provides a streamlined solution to these problems, catering to
community engagement and simplifying organizational management

The platform is built around key design requirements to ensure usability, scalability, and
functionality. These include secure user authentication, an intuitive user interface, real time
messaging, event management, and seamless payment processing. The design emphasizes fast
response times, compliance with General Data Protection Regulation (GDPR) , and the ability to
support a growing user base.

The design uses a modern tech stack. The frontend is implemented in React and TypeScript for a
clean modular interface, while the backend uses Node.js and MongoDB for robust data handling
and scalable microservices. A monorepo architecture supports streamlined development across
both the frontend and the backend with shared functionalities ensuring maintainability.

Significant progress has been made so far. Core functionalities such as user authentication, event
scheduling, and messaging have been implemented. The database schema for users and
organizations is also functional, and features like organization search and user onboarding are
operational. The frontend integrates these features with a responsive design that ensures
accessibility across all devices.

The platform has been tested against initial requirements, including functionality, speed, and
security. They have been tested with tools like Jest and Selenium. Testing outcomes demonstrate
that Orgifi meets user needs effectively by providing reliable performance, easy navigation, and a
clear separation of role for admins and general users.

The next steps include optimizing the system for scalability to handle more concurrent users,
enhancing search performance with indexing technologies, and improving the user experience for
recruitment workflows. The platform will focus on implementing a robust payment processing for
managing dues and transactions securely.

Orgifi is on its way to becoming a comprehensive community management tool, addressing real
world needs with an innovative design and modern technologies.

Learning Summary
Development Standards & Practices Used

Standard practices for full-stack development:

● Frontend: Use of ReactJS for building dynamic, user-friendly interfaces.
● Backend: Node.js with Express for server-side logic.
● Database: MongoDB for efficient and scalable data storage.
● Version Control: Git and GitHub for collaboration and version tracking.
● Testing: Unit testing with Jest and integration testing with Cypress.

Engineering standards:

● Agile methodology for iterative development.
● RESTful API design principles.
● Use of secure authentication practices (e.g., OAuth, JWT).

Summary of Requirements:

● Create and manage clubs.
● Organize and manage events (single and joint events).
● Set up and track dues and subscriptions.
● Search for clubs based on interests.
● Join clubs and participate in events.
● Manage personal profiles and payment information.
● Secure user authentication.
● Real-time notifications for event updates.
● Admin interface for managing content.

Applicable Courses from Iowa State University Curriculum
● CPRE 431: Operating Systems Principles (user and group management, server architecture).
● COM S 319: Software Construction and User Interfaces (React and frontend principles).
● SE 329: Software Project Management (Agile development practices).
● COM S 309: Software Development Practices (version control and team collaboration).
● CPRE 308: Networking Basics (real-time notification systems and API development).

New Skills/Knowledge acquired that was not taught in courses
Implementation of real-time chat and notifications using WebSockets or Firebase.

Experience with deploying applications on cloud platforms like AWS or Heroku.

Hands-on UI/UX design practices for a polished user interface.

Advanced security measures such as data encryption and secure token handling.

Table of Contents
1. Introduction 5

1.1. PROBLEM STATEMENT 5

1.2. INTENDED USERS 5

2. Requirements, Constraints, And Standards 5

2.1. REQUIREMENTS & CONSTRAINTS 5

2.2. ENGINEERING STANDARDS 5

3 Project Plan 6

3.1 Project Management/Tracking Procedures 6

3.2 Task Decomposition 6

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 6

3.4 Project Timeline/Schedule 6

3.5 Risks And Risk Management/Mitigation 7

3.6 Personnel Effort Requirements 7

3.7 Other Resource Requirements 7

4 Design 7

4.1 Design Context 7

4.1.1 Broader Context 7

4.1.2 Prior Work/Solutions 8

4.1.3 Technical Complexity 8

4.2 Design Exploration 9

4.2.1 Design Decisions 9

4.2.2 Ideation 9

4.2.3 Decision-Making and Trade-Off 9

4.3 Proposed Design 9

4.3.1 Overview 9

4.3.2 Detailed Design and Visual(s) 9

4.3.3 Functionality 10

4.3.4 Areas of Concern and Development 10

4.4 Technology Considerations 10

4.5 Design Analysis 10

5 Testing 10

5.1 Unit Testing 11

5.2 Interface Testing 11

5.3 Integration Testing 11

5.4 System Testing 11

5.5 Regression Testing 11

5.6 Acceptance Testing 11

5.7 Security Testing (if applicable) 11

5.8 Results 11

6 Implementation 12

7 Professional Responsibility 12

7.1 Areas of Responsibility 12

7.2 Project Specific Professional Responsibility Areas 12

7.3 Most Applicable Professional Responsibility Area 12

8 Closing Material 12

8.1 Discussion 12

8.2 Conclusion 12

8.3 References 13

8.4 Appendices 13

9 Team 13

9.1 TEAM MEMBERS 13

9.2 REQUIRED SKILL SETS FOR YOUR PROJECT 13

(if feasible – tie them to the requirements) 13

9.3 SKILL SETS COVERED BY THE TEAM 13

(for each skill, state which team member(s) cover it) 13

9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 13

Typically Waterfall or Agile for project management. 13

9.5 INITIAL PROJECT MANAGEMENT ROLES 13

9.6 Team Contract 13

1. Introduction

1.1 PROBLEM STATEMENT

When a person is moving to a new city, looking for new hobbies, or looking to increase the
size of their intramural sports team, they will soon encounter the issues of finding and managing a
small organization. It is difficult for people seeking new clubs or organizations to find them in the
first place, and it is difficult for those who run organizations to coordinate dues and find new
members. People with niche interests may not even know if others in their area are interested in
their hobbies. Orgifi aims to alleviate the frustration involved with finding and managing small
groups. It will have features for those seeking and managing clubs, such as search, request for new
group formation, and payment management.

1.2 INTENDED USERS

Our platform is designed to cater to various targeted users' individual demands and
characteristics. First and foremost, we picture students actively looking for extracurricular activity
opportunities at their schools. These people probably need to set up the clubs because they are
unfamiliar with the college setting. They require a straightforward approach to investigate, find, and
gain additional knowledge about other groups or chapters that correspond with their hobbies. With
the simple-to-use interface of our website, users may locate appropriate organizations and even
submit a request to join by searching for them by name, location, or school. Fostering a sense of
community and belonging contributes to the overall objective of raising student involvement.

Another critical group includes existing members of these organizations. These users range
from newly joined members to those with more significant involvement within the club. They need
tools to facilitate seamless communication and collaboration with other members, access to a
shared calendar for event planning, and a way to interact socially within the club. The platform
addresses these needs by offering features such as group chat, event management, and a list of
other members. This streamlines communication and makes it easier for members to engage
actively in organizational activities.

Finally, we think about these clubs' administration. These people oversee the daily
operations, which include arranging events, arranging activities, and adding or removing members.
The platform drastically reduces administrative workload by offering complete capabilities for
managing recruitment contacts, permissions, and member information. These features free up
administrators to spend more time on member experiences and less time on administrative tasks.
By meeting their unique demands, our platform adds value to each user group, improving student
life, building community, and guaranteeing smooth club operations.

Appendices

Fletcher, D., & Brookman, A. (2002). Making joining easy: Case of an entertainment club website.
American Institute of Graphic Arts. Retrieved from
https://dl.acm.org/doi/abs/10.1145/507752.507755?casa_token=VgTWy1jTrhwAAAAA:F8rjyHX8xAzw
mJLnO0Q3N8z-jpFwMo7m0-egp1QcKwJ0kNnQnP_bzoroe7BSxdnYtDkSuOxZN0_rISUk

This paper’s intended users of the platform include students seeking to join campus clubs,
current club members, and club administrators. Students need a simple way to explore and join
organizations, enhancing their campus involvement. Members need communication tools and
event coordination features to stay actively engaged. Administrators need efficient management
tools to organize events, handle membership information, and coordinate recruitments. The
platform addresses these needs by providing features like a search function for organizations, a
shared calendar, chat options, and administrative tools. This supports the overarching goal of
fostering community, improving engagement, and streamlining club operations.

https://dl.acm.org/doi/abs/10.1145/507752.507755?casa_token=VgTWy1jTrhwAAAAA:F8rjyHX8xAzwmJLnO0Q3N8z-jpFwMo7m0-egp1QcKwJ0kNnQnP_bzoroe7BSxdnYtDkSuOxZN0_rISUk
https://dl.acm.org/doi/abs/10.1145/507752.507755?casa_token=VgTWy1jTrhwAAAAA:F8rjyHX8xAzwmJLnO0Q3N8z-jpFwMo7m0-egp1QcKwJ0kNnQnP_bzoroe7BSxdnYtDkSuOxZN0_rISUk

2. Requirements, Constraints, And Standards
2.1 REQUIREMENTS & CONSTRAINTS

● Functional requirements
○ The platform must support the authentication(Sign in/up/out)
○ Users can search for organization by name, id or school
○ Users can move in and out of the organization very clearly
○ Users can check the description of organization very clearly
○ Members can see the list of their team members
○ Members should can easy to check their events very easy in calendar
○ Members can filter the events that are related to their club or not
○ Club leaders can invite or kick out member easily
○ Club leaders should be able to create events and filter it does only for members or

everyone
○ Club leaders can view potential recruits and add new contracts to the recruits list

● Resource Requirement
○ Frontend must use React JS/Typescript to implemented
○ Backend service should use Typescript and Node.js for type safety
○ Preferred database technology is MongoDB
○ Monorepo structure should be used to store both frontend and backend services,

separated by apps (services) and packages (common functionalities)
● Physical Requirements

○ Must support desktop and mobile browsers
○ Must hosted on a scalable server architecture

● Aesthetic Requirements
○ UI should be clean and easy to use
○ Color scheme and typography should enhance readability and usability

● User Experiential Requirements
○ The platform must provide the seamless onboarding experience for new users
○ User should easy to navigate easily between organization, calendar, chats, etc pages
○ User interaction should be fast, response time should be in 2s
○ Error message should be clear and concise

● Economic/Market Requirements

○ Platform should be scalability to support multiple organization and users

● UI Requirements

○ UI must support a responsive design for desktop, tablet and mobile.

○ Calendar and recruitment tabs should be easily accessible within the UI

○ A clear, visual hierarchy should differentiate between admin and non-admin users’
permissions

● Security Requirements

○ Authentication should use secure password hashing

○ The platform must comply with GDPR regulations if used in regions where it
applies (constraint)

○ User data should be encrypted during transmission (constraint)

● Quantitative Requirements

○ The platform should handle up to 10,000 concurrent users during peak times

○ Chat messages should be delivered in under 500 milliseconds

○ Search functionality should return results within 1 second

2.2 ENGINEERING STANDARDS

There are a lot of engineering standards likely for our project. For networking, the platform
must follow IEEE 802.11 for Wi-Fi compatibility and use HTTP/HTTPS (RFC 2616/2818) to ensure
secure web communication. OAuth 2.0 is essential for secure user authentication. Our platform’s
frontend must adhere to the HTML5 standard, ensuring compatibility across browsers and devices.
The standard for data interchange format is especially relevant if we are working with APIs for
front-end and back-end communication.

Q1) 

The "IEEE Standards in Everyday Life" movie emphasizes engineering standards'
importance to our day-to-day existence. Standards promote safety, dependability, and compatibility
by ensuring that various technologies—from smartphones to healthcare systems—operate unison.
Engineers and developers produce products that satisfy customer expectations, are interoperable,
and enhance people's quality of life by adhering to standards. Standards also foster innovation by
guaranteeing that new technologies may seamlessly connect with current systems across various
industries. They offer a framework for reliable, safe, and expandable technology development.

 Q2)

IEEE/ISO/IEC 12207-2017: This standard defines a framework for the entire software life cycle,
covering processes, activities, and tasks needed to develop, maintain, and retire software systems. It
ensures consistency in the terminology and methods used by software developers, making it easier
to manage complex projects.

IEEE 829-1998: It describes the procedures for determining whether the program satisfies the
requirements and performs as planned. Testing is divided into various integrity levels to ensure
comprehensive validation at every stage of the project. It is necessary for verifying features like chat
systems, event management, and member authentication.

IEEE 1012-1998: This is a standard related to Software Verification and Validation (V&V). Through
stringent testing and validation procedures, it offers a framework to guarantee that software
systems fulfill their intended requirements and specifications. The standard describes software
evaluation procedures at different development lifecycle phases to ensure system integrity, quality,

and performance. It is appropriate for us since we are proposing the project, and to improve the
results, we require stringent software review procedures.

Q3)

They are really important for our project, IEEE/ISO/IEC 12207-2017 is crucial for managing the
software lifecycle, guiding the team through structured phases of development and maintenance of
the platform. The IEEE 829-1998 applies to project's need for thorough software testing and
validation, ensuring key features like authentication, chats, and event handling function properly.
IEEE 1012-1998 is highly pertinent to the project, especially when using Verification and Validation
(V&V) procedures to guarantee the platform's accuracy and dependability. V&V ensures that every
component works as planned and satisfies criteria because the platform includes user data,
authentication, and communication functions.

Q4) 

We also choose IEEE 802.11 (Wi-Fi Standards), which ensures the platform works efficiently over
wireless networks, which might be necessary if your platform needs to work seamlessly on mobile
devices. Also we choose IEEE 1471 for System Architecture documentation, ensuring clear guidelines
and structure for system components, useful for large-scale microservice architectures.

 

Q5)

We will use a defined software life cycle for distinct project phases to integrate the chosen
standards, guaranteeing systematic development and maintenance. By incorporating thorough
testing at each level, we will improve verification and validation and ensure all features function as
intended. Test documentation will also be kept up to date to document test outcomes, monitor
problems, and confirm functionality such as event handling and authentication. These changes will
improve the project's quality, dependability, and adherence to industry standards.

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team will use an agile project management style. We decided to use this style because
as a software project we are going to frequently encounter implementation challenges that may
require us to modify our goals. Additionally, many of our goals may have dependencies that other
team members are waiting on, so it is important to get constant feedback from other team members
to catch blocks before they result in a large amount of wasted time. Since our project is a web
application it is also never “done”. We may have a version 1.0, but we can always add more features
to improve it. By using agile we are able to better fit our project management style to our project
and constantly be able to plan out new features.

3.2 TASK DECOMPOSITION

In order to solve the problem at hand, it helps to decompose it into multiple tasks and subtasks and
to understand interdependence among tasks. This step might be useful even if you adopt agile
methodology. If you are agile, you can also provide a linear progression of completed requirements
aligned with your sprints for the entire
project.

Software version 1.0 schedule:

1. Authentication
2. User database entries
3. Organization database entries
4. Organization search
5. Organization member add/delete
6. Organization calendar/events
7. Organization recruiting
8. User request organization
9. Organization chat
10. Payment processing

Our sprints will revolve around these goals. Each of these features involves changing the database
or adding a new microservice into our application. These subtasks also have subtasks that
constitute them as well, so the purpose of each week's sprint is to break down our high level design,
engineer a solution, and assign tasks to various group members to implement each goal. Each
sprint may require us to learn a new technology or to slightly modify our plans for the project to
account for new information, but our main features here will be implemented in the end.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

1. Project Setup: Design the database and tables for all the milestones in section 3.2 and set
up the mono repo.

- Metric: 75% of the database schema has been designed, and we plan on going to
90% when we determine how we will be handling permissions.

2. Authentication: Users will be able to sign up, log in, reset passwords when necessary, and
verify their role in a club.

- Metric: Safe and successful signup/login of users under 2 seconds.
3. User database entries: Have a database that stores user information securely and

validates their data correctly.
- Metric: 100% validation of user entries like names, passwords, and email

addresses.
4. Organization search: Design a functional search function that users use to look up clubs

they want to join. Will also have a category feature.
- Metric: 90% of searches will provide the desired output in under 2 seconds.

5. Organization member add/delete: Implement member management to be fully
functional.

- Metric: 90%+ success rate for adding and deleting members.
6. Organization calendar/events: Create a system for event management and a calendar

where these events can be tracked.
- Metric: 100% of events should appear accurately on the calendar.

7. Organization recruiting: Design and implement the organization recruitment process
and feature.

- Metric: 90% of users should be able to submit requests to join clubs and should
be aware of the status of the requests.

8. User request organization: Design and create a feature that allows users to request to
join an organization.

- Metric: 95% of requests should be able to be processed safely and successfully.
9. Organization chat: Design and implement a messaging feature that allows

communication between club members and also between executive members of other
clubs.

- Metric: Messaging should be at least 90% accurate.
10. Payment processing: Design and implement a system that allows users to pay their dues

and allows tracking of the payments made.
- Metric: Have at least 95% of successful transactions.

We will measure progress on these tasks by following strict deadlines and communicating about
any issues encountered along the way so as to overcome these.

3.4 PROJECT TIMELINE/SCHEDULE

The timeline begins with essential tasks such as authentication and organization setup and
progresses through communication, event management, and recruitment functions. Optional
payment processing is kept for last, allowing the team to focus on key features. The chart
successfully depicts Agile planning, with overlapping activities and sprints aimed at integrating and
improving core functionalities over time.

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

● Authentication
○ RISK: Security Vulnerabilities: Probability = 0.6. Mitigation: Use a reliable

authentication provider like Auth0 or Firebase Auth to handle security. Regularly
update libraries and apply industry-standard security protocols (e.g., 2FA).

○ Alternative Options: By offering safe, scalable solutions, managed authentication
(Auth0, Firebase) may reduce risk, albeit possibly at a recurring expense.

● User Database Entries
○ RISK: Data Integrity Issues: Probability = 0.5. Mitigation: Use MongoDB to enforce

schema validation, putting special restrictions on fields like login and email.
○ Alternative Options: While using a managed database with built-in scalability

and data validation features may improve reliability, it may also raise running
expenses.

● Organization database entries
○ RISK: Data Consistency Across Services: Probability = 0.6, Mitigation: To minimize

read/write inconsistencies, establish a caching layer and specify a centralized
service for organizational data.

○ Alternative Options: Employ a NoSQL database that has relationship support
built in, or think about using an off-the-shelf platform that facilitates organization
administration.

● Organization Search
○ RISK: Search Performance: Probability = 0.7. Mitigation: Test with real data early

on and use an indexing technology like Elasticsearch for effective, scalable search
capabilities.

○ Alternative Options: Despite the potential cost, think about using Elasticsearch
as an add-on to increase search accuracy and speed in big datasets.

● Organization Member Add/Delete
○ RISK: Permission Management Complexity: Probability = 0.6. Mitigation: Clearly

specify permissions and roles inside the codebase. Test role assignments with
varying permissions by utilizing role-based access control libraries.

○ Alternative Options: For a possible ongoing fee, employ a third-party user
management system to make this process simpler.

● Organization Calendar/Events
○ RISK: Event Synchronization: Probability = 0.5. Mitigation: Address event

management and synchronization problems by using a third-party API. This lowers
internal complexity.

○ Alternative Options: Although using an established calendar service (like Google
Calendar) would lower risk, there may be fees associated with using the API.

● Organization Recruiting
○ RISK: Privacy and Data Compliance: Probability = 0.5. Mitigation: Limit stored

personal data and put consent procedures in place to guarantee adherence to data
privacy requirements.

○ Alternative Options: Consider using a third-party hiring tool that is compatible
with the platform to cut down on development time and improve security.

● User Request Organization
○ RISK: Workflow Complexity: Probability = 0.4. Mitigation: Maintain a

straightforward join request procedure. Establish request status monitoring and
keep things simple by avoiding having several pending statuses.

○ Alternative Options: Think about outsourcing to an external CRM product with
integration capabilities if this feature is too sophisticated.

● Organization Chat

○ RISK: Real-Time Performance and Message Consistency: Probability = 0.7.
Mitigation: To prevent duplicates, use WebSocket-based libraries such as Socket.IO
and provide message acknowledgment. Early on, test the chat feature while it's
loading.

○ Alternative Options: For messaging, use a managed service like Pusher or
Firebase Realtime Database, which offers scalability and dependability at a possible
cost.

● Payment Processing
○ RISK: Compliance with Payment Regulations: Probability = 0.8. Mitigation: To

manage transactions safely and in accordance with PCI requirements, use a
third-party payment processor (Stripe, Square).

○ Alternative Options: Using a third-party provider like as Stripe simplifies
compliance, lowers the risk of handling sensitive data, and offers safe off-the-shelf
payment options.

3.6 PERSONNEL EFFORT REQUIREMENTS

Task Hours Description

Authentication 10 Implement authentication
with provider integration (e.g.,
Auth0/Firebase), including
setup and testing.

User Database Entries 10 Define user schema,
implement CRUD operations,
and ensure validation and data
integrity.

Organization Database Entries 10 Define organization schema,
relationships with users, and
ensure data consistency across
microservices.

Search 30 Implement efficient search
functionality, including
indexing and testing with
sample data.

Organization Member
Add/Delete

20 Implement role-based access
control (RBAC) and ensure
permissions are correctly
managed and tested.

Organization Calendar/Events 35 Build calendar integration and
event CRUD operations;
requires additional research
and API integration.

Organization Recruiting 15 Develop logic for organization

recruitment workflows and
necessary database changes.

User Request 10 Create feature for users to
request joining organizations,
including notifications and
response handling.

Organization Chat 40 Set up real-time chat, likely
with WebSockets, and test
concurrency and message
persistence.

3.7 OTHER RESOURCE REQUIREMENTS

We might need a device like Nexus Google Device to run our app or a similar device that can be
used to demo our project. Also, we might need a 32-inch or larger screen to display our final
presentation slides.

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

Our project focuses on addressing the challenges of managing and engaging communities by
providing a platform that simplifies club discovery, event organization, and communication. It is
designed for students, organizations, and just anyone who wants to find a community of people
with similar interests. By fostering better connectivity, reducing, and increasing participation, our
project helps build stronger, more inclusive communities. This platform ultimately meets societal
needs by improving collaboration and providing opportunities for growth and shared experiences.

Area Description Examples
Public health,
safety, and
welfare

How does your project affect the general
well-being of various stakeholder
groups? These groups may be direct
users or may be indirectly affected (e.g.,
solution is implemented in their
communities)

Increasing/reducing exposure to
pollutants and other harmful
substances, increasing/reducing
safety risks, increasing/reducing
job opportunities

Global,
cultural, and
social

How well does your project reflect the
values, practices, and aims of the
cultural groups it affects? Groups may
include but are not limited to specific
communities, nations, professions,
workplaces, and ethnic cultures.

Development or operation of the
solution would violate a
profession’s code of ethics,
implementation of the solution
would require an undesired change
in community practices

Environmental What environmental impact might your
project have? This can include indirect
effects, such as deforestation or
unsustainable practices related to
materials manufacture or procurement.

Increasing/decreasing energy
usage from nonrenewable sources,
increasing/decreasing
usage/production of
non-recyclable materials

Economic What economic impact might your
project have? This can include the
financial viability of your product within
your team or company, cost to
consumers, or broader economic effects
on communities, markets, nations, and
other groups.

Product needs to remain affordable
for target users, product creates or
diminishes opportunities for
economic advancement, high
development cost creates risk for
organization

4.1.2 Prior Work/Solutions

Include relevant background/literature review for the project (cite at least 3 references for literature
review in IEEE Format. See link:
https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf)

The need for platforms to manage clubs, organizations, and events has grown as community
engagement increasingly relies on digital solutions. Our project builds on existing solutions while
addressing specific gaps identified in the literature and similar platforms.

https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

[1] A. J. Coleman, “Student organization engagement: The role of leadership in fostering student
retention,” Journal of Student Affairs Research and Practice, vol. 54, no. 1, pp. 71–84, 2017

[2] CampusGroups, “Engage your students, faculty, staff, and alumni,” CampusGroups. [Online].
Available: https://www.campusgroups.com/.

[3] N. Dabbagh and A. Kitsantas, “Personal Learning Environments, social media, and self-regulated
learning: A natural formula for connecting formal and informal learning,” The Internet and Higher
Education, vol. 15, no. 1, pp. 3–8, Jan. 2012.

Several platforms like Slack, Discord, and school club websites cater to community
management. Slack and Discord focus on communication but lack features like event and
membership management. School club websites are usually constrained to certain schools or
geographic areas.

These solutions address individual aspects but fail to integrate all functionalities seamlessly. Orgifi
differentiates itself by offering an affordable, all-in-one platform that combines event management,
membership tracking, and communication tools, specifically tailored for clubs and organizations.

– Note that while you are not expected to “compete” with other existing products / research groups,
you should be able to differentiate your project from what is available. Thus, provide a list of pros
and cons of your target solution compared to all other related products/systems.

Pros

● Affordable pricing tailored for clubs.
● Integrated event management, communication, and membership tracking.
● Accessible to all clubs and organizations, not limited to specific schools.
● User-friendly and customizable for club needs.

Cons

● May lack some advanced features offered by more specialized platforms.
● May have fewer integrations with third-party tools compared to larger platforms.

4.1.3 Technical Complexity

Provide evidence that your project is of sufficient technical complexity. Use the following metric or
argue for one of your own. Justify your statements (e.g., list the components/subsystems and
describe the applicable scientific, mathematical, or engineering principles)

1. The design consists of multiple components/subsystems that each utilize distinct scientific,
mathematical, or engineering principles –AND–

2. The problem scope contains multiple challenging requirements that match or exceed
current solutions or industry standards.

https://www.campusgroups.com/

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions
Three key design decisions that we have made are:

Authentication: We decided to use Auth0 for authentication as it is easy to implement and essential
for user security.

Database Selection: We chose to use MongoDB because of its flexible data handling as well as
Firebase cloud storage for images.

Real-time Communication: We are using websockets for our chat function which will ensure real
time updates.

4.2.2 Ideation
For the database selection, we considered several options such as:

- MongoDB
- MySql
- Firebase
- DynamoDB
- PostgreSQL

4.2.3 Decision-Making and Trade-Off

We decided to use MongoDB due to its adaptability with Orgifis data needs despite being slightly
less structured than a SQL based database. For images we decided to use Firebase cloud storage due
to its scalability.

4.3 PROPOSED DESIGN

4.3.1 Overview

We are implementing a website that people can use to start or join communities of people that
share similar interests.

- It will contain a user-friendly design user interface for users to be able to easily
navigate through.
- The backend, behind the scenes work will be able to securely store and handle the user
operations.
- Chat feature where club members can easily chat.
- Calendar where they can see club events and schedules.
- Organizations search where they can easily search for clubs they want to join.

4.3.2 Detailed Design and Visual(s)

Front End (Next.js): Will handle user interactions and communications with backend services via
APIs. It will manage user interfaces for browsing clubs, events, managing profiles, etc.

Auth Service (Auth0): Provides authentication and authorization securing access to the system.

Image Storage: Used for storing all media files like club logos and event images. This is separate
from the main data storage to improve performance and scalability.

Microservices Layer (Node.js):

- Recruitment: Manages the recruitment process with club like applications and
approvals.
- Calendar: Handles scheduling and tracking events integrating with user calendars if
needed.
- Finances: Manages dues, subscriptions, and payments.
- Chat: Supports communication with club members between users.
- Organization: Manages club’s details and settings, allows club admins to customize
their organizations profile.
- Membership/Permissions: Controls user’s permissions, managing roles within clubs
and making sure the access is secure.
- Users: Maintains user profile data and links users with clubs they have joined.

4.3.3 Functionality

4.3.4 Areas of Concern and Development

The current design of Orgifi is well structured to satisfy the core requirements, by offering features
that allow club owners to create communities, events, and memberships. For students it offers an
intuitive interface for discovering clubs, joining events, and managing subscriptions. This helps
users meet their needs for easy access to campus events and activities.

Based on your current design, what are your primary concerns for delivering a product/system that
addresses requirements and meets user and client needs?

Performance and scalability, as the user base grows the platform must handle the increased load
especially during peak times like the beginning of the semester. Ensuring the system stays
responsive under high traffic is crucial.

Data Security and Privacy: Since Orgifi will handle sensitive information like. personal data and
payment data. We must ensure robust security practices as it is vital to protect the user’s
information.

What are your immediate plans for developing the solution to address those concerns? What
questions do you have for clients, TAs, and faculty advisers?

Are there specific security standards or compliance requirements that Orgifi must adhere to?

Does our microservices approach align with best practices, or are there alternative structures that
would enhance reliability and scalability?

4.4 TECHNOLOGY CONSIDERATIONS

Frontend: For the front end, we will be utilizing Next.js.

- Strength: Node js improves page load time.
- Weakness: Build times may increase significantly if the project gets too large.
- Tradeoff: We chose next js over react as it has better api routes.
- Solution: We could implement code splitting to reduce size.
- Alternative: We could use react instead of next.js.

Backend: We will be using Typescript with Node js for the backend

- Strength: Node js contains a lot of libraries that will help us be able to create multiple
features easily.
- Weakness: Managing typescript might be hard and increase our code base size.
- Tradeoff.: We chose typescript over JavaScript as it is easier to manage.
- Solution: Modularize the code so that it is very well structured.
- Alternative: Utilize Django as it is also very secure.

Database: We will be using MongoDB for our database.

- Strength: MongoDB can handle large amounts of data sets.
- Weakness: Data redundancy.
- Tradeoff: MongoDB has better database management than firebase.
- Solution: Use Mongoose to avoid the duplication of data.
- Alternative: Utilize Firebase as it is also safe and reliable.

4.5 DESIGN ANALYSIS

- Backend of Organization: So far, this feature has been implemented. The proposed design
works and the next with this feature will be to debug and test it out and make sure that it is
reliable.
- Frontend of Organization: So far, this feature has been implemented. The proposed design
works and the next with this feature will be to debug and test it out and make sure that it is
reliable.
- Chat feature: So far, this feature is still being implemented. The proposed design works and
the next with this feature will be to debug and test it out and make sure that it is reliable.
- Authentication: So far, this feature has been implemented and tested. The proposed design
works and the next with this feature will be to ensure user data security test and make sure that it is
reliable.
- Calendar feature: So far, this feature is still being implemented. The proposed design works
and the next with this feature will be to debug and test it out and make sure that it is reliable.

5 Testing

5.1 UNIT TESTING

All of Orgifi’s main features will be tested using Jest in Javascript. Jest is a unit testing framework
that will allow regression testing of the main features, so that new features can be added without
breaking the old features. There will be a test set for each main feature including but not limited to:
chat, the organization page, the search page, and the calendar. In addition to the main features test
suite, a database test file will be created to ensure that the MongoDb database works as expected.
Finally, the website’s frontend will be tested using Selenium in order to ensure that the user facing
interface functions correctly.

5.2 INTERFACE TESTING

There are three main testable interfaces present in this application: the UI, the API, and the
database. These sections will be tested individually by testing all user facing components after other
tests confirm that the inner components are functioning correctly. The API will be tested using
Postman to confirm that all basic functionality works.

5.3 INTEGRATION TESTING

The goal of integration testing for Orgifi is to test the full path from user>API>database>API>user.
Getting this path to work correctly will be the most difficult task of the project. Since we can’t
construct this system without first constructing its constituent components we will need to test
each component to ensure that they function correctly. Before making them we will have
specifications to ensure that each component when completed will be able to connect to the other
components. After these are completed we will connect them together and write test files to ensure
that these components function together.

5.4 SYSTEM TESTING

Our system will be tested as a whole by ignoring all internal tests and instead focusing on
everything that the user would interact with. To accomplish this goal we pick specific tests from our
test suite that focus on HTTP requests and UI interactions. We will move through our list of
required features and write tests in Postman and Selenium that test the functionality.

5.5 REGRESSION TESTING

Our test suite will be run on all of our main components each and every time a new major or minor
feature is added. We will use Jest and Selenium tests to ensure that no new feature breaks old
functionality. It is critical that once a feature is added no other components features interfere with
it. We aim to have a high degree of separation between components to facilitate future
modifications.

5.6 ACCEPTANCE TESTING

After a major feature is implemented we shall look at our list of requirements and confirm that it
completes its required goal. Since our client is our professors we will confirm that our project is up
to par by demonstrating progress to our advisor bi-weekly and to our professors twice a semester.
These demonstrations will confirm that our project’s functional requirements work as intended.
Once our functional requirements work we will begin testing non-functional requirements such as

security, reliability, and scalability. Our professors and advisors will have opportunities to tell us
what we should improve on several times a semester, so we should have many opportunities to
pivot if need be.

5.7 RESULTS

Currently only manual testing has been performed to ensure that the organization, database, and
authentication systems work. Next we are going to write tests for each of the main components in
our project to ensure that they function correctly. Since each team member works on a separate
feature we will merge these features together shortly and test them together will separate
integration tests. Finally we will need to write API tests and UI tests. The API tests will be written
incrementally as new endpoints are added. UI tests will be written as more of the frontend is
created and finalized.

6 Implementation

Frontend Implementation

● Organization Page:
○ Developed a responsive and intuitive interface to manage organizational details,

such as name, logo, category, and location.
○ Integrated search functionality to help users locate specific organizations quickly.
○ Utilized reusable components in Next.js and TypeScript for modular and

maintainable code.
● Calendar System:

○ Created a calendar view where users can schedule and view events for their
organizations.

○ Implemented navigation between different time frames (e.g., weekly, monthly) and
enhanced accessibility features.

● Messaging Interface:
○ Designed a chat interface to facilitate real-time communication among

organization members.
○ Focused on usability by integrating message previews and notifications for

incoming messages.

Backend Implementation

● Authentication Service:
○ Developed a user authentication system using Node.js and MongoDB.
○ Implemented user registration and login functionality with JWT-based token

authentication.
○ Enforced secure password storage.

● User Database
○ Set up a MongoDB database for storing user details, including user IDs, roles, and

permissions.
○ Integrated efficient mechanisms to retrieve and update user information

dynamically.
● Backend for Frontend

○ Built APIs for managing the frontend functionalities of the organization, calendars,
and messages.

○ Ensured consistency across services by using TypeScript and defining common
types in a shared monorepo.

.

7 Ethics and Professional Responsibility

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

The area that our team is performing well is honesty. Throughout the project, the team has
demonstrated exceptional performance in honesty, which is a fundamental component for
upholding responsibility and trust. The team has prioritized open communication from the start,
making sure that all parties involved are aware of the project's status, obstacles, and reasonable
expectations. This strategy is in line with the IEEE Code of Ethics, which strongly emphasizes being
accurate and reasonable when stating opinions or offering estimates. Frequent team meetings and
progress reports have greatly aided the development of this honest culture. The team has
continuously offered data-driven updates, openly discussed technical challenges, and given
reasonable delivery deadlines. For instance, the team promptly notified the adviser of any delays in
creating a particular feature, explained the underlying reasons, and suggested an updated
timeframe. Trust between team members and outside partners has increased due to this
transparency. The group has also demonstrated a dedication to moral behavior by refraining from
overstating or promising too much. Instead, they have concentrated on producing work that aligns
with the project's goals and technological viability. By placing a high value on integrity, the group
has fostered an atmosphere of respect and cooperation, keeping everyone informed and working
together to accomplish shared objectives morally and practically soundly.

The area that we still improve is when the team increases their professional skills, especially in
Node.js and MongoDB. Although the team wants to deliver high-quality work, it will face many
obstacles because we sincerely try to learn these important areas. We have experienced delays in the
project due or stuck on some progress because we need more knowledge to use these technologies.
Team members still rely on online resources such as tutorials, manuals, and forums for self-directed
learning. While this approach has been beneficial, it has not yet reached expected progress, and
significant technical gaps remain. To improve it, the team needs to find a more cohesive way to fix
the problem together. Having clear technical learning objectives and a timeline for achieving them,
the team can ensure that each member develops the necessary skills to contribute effectively.

7.2 FOUR PRINCIPLES

Context Area Beneficence Nonmaleficence Respect for Autonomy Justice

Environment Promotes
sustainability
through reusable
components.

Consumes
energy/resources
during
development

Allows organizations to
opt for greener practices
through tools.

Ensures equitable
resource usage and
impacts.

Social Builds strong
user connections
via chat and
events.

Potential for
misuse of the
platform for
harassment.

Users have control over
joining and interacting in
organizations.

Equal access for all
users without
discrimination.

Economic Provides free
access to
organization
tools

Maintenance
could incur
financial costs for
admins.

Organizations can freely
choose whether to adopt
the platform.

Ensures all users
benefit, regardless of
size.

Culture Fosters inclusion
by supporting
diverse
organizations.

Could
inadvertently
marginalize
underrepresented
groups.

Members decide how to
use the platform to suit
cultural needs.

Supports diverse use
cases without bias.

One critical context-principle pair for our project is Social - Beneficence. Our platform is designed
to enhance social connections by enabling users to join organizations, engage in discussions, and
participate in shared activities. This fosters a sense of belonging and collaboration within
communities. To ensure we achieve this benefit, we are focusing on creating intuitive user
interfaces, seamless communication tools, and accessible features that encourage meaningful
interactions.

Our project is lacking in the Environment - Nonmaleficence area, as the platform's development
and hosting consume significant energy and computational resources, potentially contributing to a
higher carbon footprint.

7.3 VIRTUES

● Collaboration: The ability to work together harmoniously, leveraging each member’s
strengths to achieve shared goals.

○ Team Action: regular team meetings, clear task assignments, and encouraging
open communication and idea-sharing.

● Accountability: Taking responsibility for one's actions and fulfilling commitments to the
team.

○ Team Actions: Establishing deadlines, progress tracking, and addressing
challenges as a group.

● Respect: Treating every team member with dignity, acknowledging their contributions,
and valuing diverse ideas.

○ Team Action: Creating a safe space for opinions, resolving conflicts amicably, and
ensuring equitable participation.

- Hongwei Wang: I think the respect I have demonstrated in the senior design. Respect is
fundamental when doing the project. We should respect everyone and not discriminate
against each member. Also, respect the member's work outcomes; we cannot plagiarize and
vilify members ' teamwork. I have respected all the team members and their work. We
never have any arguments with each member. The virtue that I did not perform well is
accountability. It is important because it relates to our project outcome. We should do
anything before the deadline to ensure the project succeeds. I have not performed well

because there is still a need to gain knowledge that will stick to the progress of our project.
It makes me unable to finish the project on time sometimes.

- Tabe Ekpombang: Collaboration is a virtue I have greatly demonstrated during this
project. Collaboration is key to success in a team environment. It allows for sharing of
ideas, skills, and expertise, leading to better problem-solving. I’ve worked closely with my
team members, ensuring clear communication between backend and frontend and making
sure everyone has a voice. The virtue I have demonstrated least in is accountability.
Accountability ensures that you are responsible for your tasks and commitments,
contributing to trust and efficiency within the team. I will take a more proactive approach
in ensuring deadlines are met, providing regular updates, and being more transparent
about any challenges I face during the development process.

- Perry Ports: Accountability is an important part of working with a team because it allows
members to acknowledge when they have made a mistake. I think this is the virtue I would
most like to work on by meeting deadlines that are set and by talking with team members
how I could improve my work. I think I have best exemplified the virtue of collaboration in
this project by setting up team meetings and trying to keep on top of our assignments. I
hope to keep collaborating well in the future while improving other aspects of my ability to
work with my team.

- Mohammed Abdalgader: In my senior design work, the virtue that I have consistently
demonstrated is respect. Respect is a foundational value when working collaboratively on
any project, and I believe it is essential for maintaining a positive and productive team
environment. In a diverse team setting, respect means treating every team member with
dignity and recognizing their contributions, regardless of differences in background, skill
levels, or opinions. It also entails respecting each member's work, ensuring that their efforts
are acknowledged and that their intellectual property is protected. On the other hand, a
virtue that I have not demonstrated as effectively is accountability. Accountability is critical
because it directly impacts the quality and timeliness of our project deliverables. Being
accountable means taking responsibility for assigned tasks, meeting deadlines, and
ensuring that each contribution helps move the project forward. This virtue is essential
because delays or lapses in accountability can hinder the team's overall progress and
success.

- Adin Huric: Empathy focuses on understanding and respecting the perspectives and needs
of team members, supported by open communication and a willingness to offer assistance
when challenges arise. Creativity emphasizes generating innovative ideas and solutions,
encouraged through brainstorming sessions and fostering a safe space for experimenting
with new approaches. Reliability ensures consistent performance and trustworthiness,
reinforced by meeting deadlines, being prepared, and maintaining accountability.
Individually, empathy has been demonstrated by actively listening to teammates and

offering help during difficult tasks, while creativity has not yet been fully utilized but will
be addressed by contributing original ideas during brainstorming and exploring alternative
solutions to technical challenges.

- Dino Huric: Being honest and adhering to high moral standards are key components of
integrity, which is reinforced by open communication, moral decision-making, and
transparency in all endeavors. The ability to adapt to new situations and challenges is
emphasized by adaptability, which is developed by promoting flexible thinking,
problem-solving, and the acquisition of new skills when needed. Meeting deadlines, staying
focused, and displaying a strong will to accomplish common objectives are all signs of
commitment to the project and team. While flexibility has not yet been fully expressed, it
will be addressed by adopting new tools and approaches and remaining receptive to input
in order to overcome barriers. Individually, integrity has been demonstrated by giving
honest updates and guaranteeing ethical procedures.

- Hunter Barton: Collaboration involves working effectively as a team by leveraging each
member's strengths, supported by regular meetings, task delegation, and open
communication. Accountability means taking responsibility for tasks and commitments,
with the team using progress tracking, weekly updates, and collaborative problem-solving.
Respect focuses on valuing contributions and fostering inclusivity, achieved through equal
input opportunities, constructive feedback, and conflict resolution. Individually,
collaboration has been demonstrated by actively participating, supporting teammates, and
meeting deadlines, while initiative has not yet been demonstrated but will be addressed by
proposing improvements, taking additional responsibilities, and exploring new tools.

8 Closing Material

8.1 CONCLUSION

Summary

So far, we have made progress in developing both the frontend and backend of our project. For the
frontend, we have developed the organization page, messaging feature, and calendar feature. On
the backend, we have developed the databases for users, organizations, chat functionality, calendar,
and user authentication.

Goals

1. Develop Community Platform: The main goal of our project is to develop a community
platform that enables users to create and manage communities through clubs and
organizations, where they can easily manage events and communicate with each other.

2. Frontend and Backend Integration: We want to ensure that this platform has a seamless
integration between the frontend and backend to ensure a smooth user experience and
have the user’s data being handled securely.

Plan of Action

1. Key Development: Develop key components such as user authentication, organization
management, and messaging first, then build upon them as the project progresses.

2. Microservices Development: Implementing microservices for backend services to ensure
that the backend can efficiently support the specific needs of the frontend.

3. Seamless User Experience: Ensuring a seamless user interface and that backend services
deliver data efficiently to maximize efficiency.

8.2 REFERENCES

Technical References and related work

[1] F. T. Ulrich and M. Pfeifer, Building Microservices with Node.js and MongoDB: A
Hands-on Approach, 2nd ed. Packt Publishing, 2021.

[2] S. Sockin and M. Piotrowski, “Design and Implementation of a Secure Authentication
Mechanism Using JSONWeb Tokens,” IEEE Access, vol. 8, pp. 182532-182540, Oct. 2020.

Market Survey References

[1] P. K. Nayak and V. Agarwal, “Survey on Event Management Platforms and Scheduling
Tools,” Proceedings of the 2021 IEEE Conference on Innovations in Software Engineering
(ICISE), Hyderabad, India, Feb. 2021, pp. 231-239.

[2] R. McLellan, “Digital Community Platforms: Trends and Market Insights 2023,” Global
Market Research Institute, 2023. [Online]. Available:
https://www.gmri.com/digital-community-platforms.

8.3 APPENDICES

Below is the link to the setup guide for our monorepo:

Link: https://drive.google.com/file/d/1QIvkWNrqV66K-2RBva4mdV2uaP3tkjoY/view?usp=sharing

Summary of the idea and expected results of Orgifi

https://drive.google.com/file/d/1QIvkWNrqV66K-2RBva4mdV2uaP3tkjoY/view?usp=sharing

9 Team

9.1 TEAM MEMBERS

- ADIN HURIC

- DINO HURIC

- TABE EKPOMBANG

- PERRY PORTS

- HONGWEI WANG

- MOHAMMED ABDELGADER

- HUNTER BARTON

9.2 REQUIRED SKILL SETS FOR YOUR PROJECT

- Backend Development.
- UX/UI Design
- Frontend Development
- Project Management
- Testing
- Version Control(Git)
- Effective Communication

9.3 SKILL SETS COVERED BY THE TEAM

- Adin Huric - Backend.
- Dino Huric- Frontend.
- Tabe Ekpombang - Backend.
- Perry Ports - Backend.
- Hongwei Wang- Frontend, Communication with Advisor.
- Hunter Barton - UX/UI Design, Backend.
- Mohammed Abdalgader - Backend, Frontend.

9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

The team has adopted an Agile project management style to allow flexibility and iterative
development, ensuring continuous improvement and adaptation

9.5 INITIAL PROJECT MANAGEMENT ROLES

- Adin Huric - Backend Developer
- Dino Huric- Frontend Developer
- Tabe Ekpombang - Project Manager
- Perry Ports - Project Manager
- Hongwei Wang- Communication Lead
- Hunter Barton - UX/UI Design Lead
- Mohammed Abdalgader - Full stack developer

9.6 Team Contract

Team Members:

1) _ Adin Huric_________________ 2) _______Perry Ports______________

3) Tabe Ekpombang 4) ______Dino Huric_______________

5) ______Hongwei Wang___________ 6) _____Mohammed Abdelgader

7) _______Hunter Barton__ _

Team Procedures

1. Day, time, and location for regular teammeetings: Weekly meetings via on Discord every
Wednesday at 5pm and in-person meetings when necessary.

2. Preferred method of communication updates, reminders, issues, and scheduling : Discord

3. Decision-making policy: Majority vote.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all teammeetings: All
team members are expected to attend discord meetings unless a circumstance arises. Advanced
notice must be provided.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:
Each member is expected to do their assigned tasks on time and communicate if there are any
issues in doing so.

3. Expected level of communication with other teammembers: Open communication is
required and each team member must provide updates on their progress.

4. Expected level of commitment to team decisions and tasks: Team members must respect
group decisions to ensure unity.

Leadership

1. Leadership roles:

- Tabe Ekpombang: Individual component design and testing, Team organization.

- Adin Huric: Individual component design and testing.

- Dino Huric: Individual component design and testing.

- Mohammed Abdelager: Individual component design and testing.

- Hunter Barton: Individual component design and testing.

- Perry Ports: Individual component design and testing, team organization.

- Hongwei Wang: Client/Advisor Interactionw, Individual component design and testing.

2. Strategies for supporting and guiding the work of all teammembers: Regular check-ins to
ensure progress and address any issues or obstacles.

3. Strategies for recognizing the contributions of all teammembers: Acknowledge individual
contributions during meetings as well as using Discord to highlight any milestone achieved by team
members.

Collaboration and Inclusion

1. Skills and Expertise:

- Adin Huric: Backend expertise

- Dino Huric: Frontend expertise.

- Tabe Ekpombang: Backend expertise

- Perry Ports: Backend expertise

- : Full stack expertiseMohammed Abdalgader

- Hongwei Wang: Frontend expertise.

- : Full stack expertise and project innovation.Hunter Barton

2. Strategies for encouraging and supporting contributions and ideas from all team
members: Foster inclusivity, encourage participation, provide feedback, and celebrate ideas to
support team contributions.

3. Procedures for identifying and resolving collaboration or inclusion issues: Goal-Setting,
Planning, and Execution

1. Team goals for this semester: Lay the groundwork for the project, ensure steady progress, and
prepare for full implementation by next semester's end.

2. Strategies for planning and assigning individual and team work: Divide tasks based on
skills and interests, set clear deadlines, and use tools like Trello or Asana for tracking.

3. Strategies for keeping on task: Hold regular check-ins, set milestones, and use reminders to
ensure accountability and steady progress.

mailto:mohd19@iastate.edu
mailto:hunter21@iastate.edu

Consequences for Not Adhering to Team Contract

1. Handling infractions of any of the obligations of this team contract: Address infractions
through open discussion, clarify expectations, and provide an opportunity for improvement.

2. What will your team do if the infractions continue: Escalate to involve the instructor or
supervisor and reassign responsibilities as needed to ensure project progress.

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Adin Huric___________________ _ __ DATE__12/6/2024________

2) Tabe Ekpombang DATE 12/7/2024_______

3) _______ Perry Ports____________________________ DATE ___12/7/2024_______

4) ________Hongwei Wang_________________ DATE ______12/7/2024_____

5) ____________Dino Huric___________________________ DATE _____12/7/2024_______

6) _____________Mohammed Abdelgader_______________ DATE _____12/7/2024_______

7) ________Hunter Barton_________ _________________ DATE ______12/7/2024______

